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• Exam duration.  The exam is scheduled to last two hours. 

• Materials allowed.  You may use books, notes, your laptop/tablet, and a calculator.  

• Disable all networks.  Please disable all network connections on all computer systems. 

You may not access the Internet or other networks during the exam. 

• No AI tools allowed.  As mentioned on the course syllabus, you may not use GPT or other 

AI tools during the exam. 

• Electronics.  Power down phones.  No headphones.  Mute your computer systems. 

• Fully justify your answers. When justifying your answers, reference your source and page 

number as well as quote the content in the source for your justification.  You could 

reference homework solutions, test solutions, etc. 

• Matlab. No question on the test requires you to write or interpret Matlab code.  If you base 

an answer on Matlab code, then please provide the code as part of the justification. 

• Put all work on the test.  All work should be performed on the quiz itself.  If more space 

is needed, then use the backs of the pages. 

• Academic integrity.  By submitting this exam, you affirm that you have not received help 

directly or indirectly on this test from another human except the proctor for the test, and 

that you did not provide help, directly or indirectly, to another student taking this exam. 

 

 

Problem Point Value Your Score Topic 

1 18  Continuous-Time System Properties 

2 18  Discrete-Time Convolution 

3 16  Continuous-Time Filter Design 

4 18  Discrete-Time Filter Design 

5 16  Continuous-Time Sinusoidal Amplitude Modulation 

6 14  Discrete-Time Mystery Systems 

Total 100   

  



Problem 1. Continuous-Time System Properties.  18 points 

Each continuous-time system has input 𝑥(𝑡) and output 𝑦(𝑡), and 𝑥(𝑡) and 𝑦(𝑡) might be complex-

valued. 

Determine if each system is linear or nonlinear, time-invariant or time-varying, and bounded-input 

bounded-output (BIBO) stable or unstable. 

You must either prove that the system property holds in the case of linearity, time-invariance, or stability, 

or provide a counter-example that the property does not hold.  Providing an answer without any 

justification will earn 0 points. 

Part System Name System Formula Linear? Time-

Invariant? 

BIBO 

Stable? 

(a) Gain 𝑦(𝑡) = 𝐴 𝑥(𝑡) where 𝐴 is finite constant. 

for − ∞ < 𝑡 < ∞ 

 

Yes 

 

Yes 

 

Yes 

(b) Tangent 𝑦(𝑡) = tan( 𝑥(𝑡) ) 

for − ∞ < 𝑡 < ∞ 

 

No 

 

Yes 

 

No 

(c) Scale time axis 𝑦(𝑡) = 𝑥(2 𝑡)  

for − ∞ < 𝑡 < ∞ 

 

Yes 

 

No 

 

Yes 

Linearity. We’ll first apply the all-zero input test. If the output is not zero for all time, then the 

system is not linear.  Otherwise, we’ll have to apply the definitions for homogeneity and additivity.  

All-zero input test is a special case of homogeneity 𝒂 𝒙(𝒕) → 𝒂 𝒚(𝒕) when the constant 𝒂 = 𝟎. 

Time-Invariance: If the current output value 𝒚(𝒕) depends only on current input 𝒙(𝒕) and not on 

any other input/output values, it is pointwise operation.  Pointwise operations are time-invariant. 

BIBO Stability.  Bounded input | 𝒙(𝒕) | ≤ 𝑩 < ∞ would give bounded output | 𝒚(𝒕) | ≤ 𝑪 < ∞. 

(a) Gain:  𝑦(𝑡) = 𝑎 𝑥(𝑡) for − ∞ < 𝑡 < ∞.  Here, 𝑎 is a finite constant. 6 points. 

Linearity: Passes all-zero input test.  Need to check the following properties: 

• Homogeneity: 𝒚𝒔𝒄𝒂𝒍𝒆𝒅(𝒕) = 𝑨 (𝒂 𝒙(𝒕)) = 𝒂 (𝑨 𝒙(𝒕)) = 𝒂 𝒚(𝒕).  YES. 

• Additivity: 𝒚𝒂𝒅𝒅𝒊𝒕𝒊𝒗𝒆(𝒕) = 𝑨 (𝒙𝟏(𝒕) + 𝒙𝟐(𝒕)) =  𝑨 𝒙𝟏(𝒕) + 𝑨 𝒙𝟐(𝒕) =  𝒚𝟏(𝒕) + 𝒚𝟐(𝒕). YES. 

Time-Invariance: All pointwise operations are time-invariant.  See above.  YES. 

BIBO Stability.  | 𝒚(𝒕) | = | 𝒂 𝒙(𝒕) | = |𝒂| | 𝒙(𝒕) |  ≤ |𝒂| 𝑩 <  ∞.  YES. 

(b) Tangent: 𝑦(𝑡) = tan( 𝑥(𝑡) ) for − ∞ < 𝑡 < ∞. 6 points. 

Linearity: Passes all-zero input test. Need to check the following properties: 

• Homogeneity: Let 𝒙(𝒕) =
𝝅

𝟒
 so 𝒚(𝒕) = 𝐭𝐚𝐧

𝝅

𝟒
= 𝟏.  When 𝒙(𝒕) =

𝝅

𝟐
 , 𝒚(𝒕) = 𝐭𝐚𝐧

𝝅

𝟐
= ∞.  NO. 

Time-Invariance: All pointwise operations are time-invariant.  See above. YES. 

BIBO Stability. When 𝒙(𝒕) =
𝝅

𝟐
 , 𝒚(𝒕) = 𝐭𝐚𝐧

𝝅

𝟐
= ∞.  NO. 

(c) Scale time axis: 𝑦(𝑡) = 𝑥(2 𝑡) for − ∞ < 𝑡 < ∞.  6 points.  CT version of F24 Midterm 2.1(c). 

  Linearity: Passes the all-zero input test. 

Homogeneity: 𝒚𝒔𝒄𝒂𝒍𝒆𝒅(𝒕) = (𝒂 𝒙(𝒕))
𝒕→𝟐𝒕

= 𝒂 𝒙(𝟐𝒕) = 𝒂 𝒚(𝒕).  YES. 

Additivity: 𝒚𝒂𝒅𝒅𝒊𝒕𝒊𝒗𝒆(𝒕) = (𝒙𝟏(𝒕) + 𝒙𝟐(𝒕))𝒕→𝟐𝒕 = 𝒙𝟏(𝟐𝒕) + 𝒙𝟐(𝟐𝒕) = 𝒚𝟏(𝒕) + 𝒚𝟐(𝒕). YES. 

Time-Invariance: Let 𝒕 = 𝒏.  𝒚(𝒕) = 𝒙(𝟐𝒕) selects even-indexed values of 𝒙[𝒏]: { … , 𝒙[−𝟐], 𝒙[𝟎], 𝒙[𝟐], … . }. 

Input 𝒙[𝒏 − 𝟏].  Output 𝒚𝒔𝒉𝒊𝒇𝒕𝒆𝒅[𝒏] will be { … , 𝒙[−𝟑], 𝒙[−𝟏], 𝒙[𝟏], … . }.  This is not 𝒚[𝒏 − 𝟏].  NO. 

BIBO Stability.  | 𝒚[𝒏] | = | 𝒙[𝟐 𝒏] | ≤ 𝑩 <  ∞.  YES 



Problem 2. Discrete-Time Convolution. 18 points 

Consider a discrete-time linear time-invariant (LTI) 

system with impulse response plotted on the right of 

 ℎ[𝑛] = 𝛿[𝑛] + 𝛿[𝑛 − 1] + 𝛿[𝑛 − 2] + 𝛿[𝑛 − 3]. 
 

For each of the following input signals,  

i.  give a formula for output signal 𝑦[𝑛]. 2 points each. 

ii. plot the output signal 𝑦[𝑛]. 4 points each. 

 

(a) 𝑥1[𝑛] = 𝛿[𝑛] − 𝛿[𝑛 − 1] + 𝛿[𝑛 − 2] − 𝛿[𝑛 − 3] 

Here, 𝑥1[𝑛] has four non-zero values. 

 

 

 

 

 

 

 

 

 

 

(b) 𝑥2[𝑛] = (−1)𝑛 𝑢[𝑛] 

Here, 𝑥2[𝑛] is 0 for 𝑛 < 0.  For 𝑛 ≥ 0, 𝑥2[𝑛] 
alternates between 1 and -1 indefinitely. 

 

 

 

 

 

 

 

 

 

 

(c) 𝑥3[𝑛] =  (−1)𝑛 

Here, 𝑥3[𝑛] alternates between 1 and -1 for all 𝑛. 

 

 

 

 

 

 

 

  

𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥1[𝑛] 
Give a formula for 𝑦[𝑛] 

Plot 𝑦[𝑛] 

𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥2[𝑛] 
Give a formula for 𝑦[𝑛] 

Plot 𝑦[𝑛] 

𝑦[𝑛] = ℎ[𝑛] ∗ 𝑥3[𝑛] 
Give a formula for 𝑦[𝑛] 

Plot 𝑦[𝑛] 

𝒚[𝒏] = 𝟎 

h = [1 1 1 1]; 

x1 = [1 -1 1 -1]; 

y = conv(h, x1); 

% [1 0 1 0 -1 0 -1] 

𝒚[𝒏] = 𝜹[𝒏] + 𝜹[𝒏 − 𝟐] − 𝜹[𝒏 − 𝟒] − 𝜹[𝒏 − 𝟔] 

𝒚[𝒏] = 𝜹[𝒏] + 𝜹[𝒏 − 𝟐] 



Problem 3. Continuous-Time Filter Design.  16 points 

In power systems, a DC-to-DC converter changes the 

voltage level of a direct current (DC) signal. 

A Buck converter provides high efficiency but produces 

undesirable output ripple and harmonics. The 

frequency plot on the right shows the first 7 harmonics. 

Design a continuous-time linear time-invariant filter to  

• pass frequencies between -0.4 MHz and 0.4 MHz 

• eliminate the fundamental frequency 𝑓0 and all its 

harmonics 

(a) Estimate the fundamental frequency 𝑓0 which is the 

frequency of the peak just below the text “RIPPLE 

LEVEL”.  The answer is somewhere between 0.5 

and 0.75 MHz.  Explain your reasoning.  4 points. 

From 0 to approximately 2.5 MHz, there are 4 harmonics, so 𝒇𝟎 =
𝟐.𝟓 𝐌𝐇𝐳

𝟒
= 𝟔. 𝟐𝟓 𝐌𝐇𝐳. 

Note:  Other answers for 𝒇𝟎 between 0.5 and 0.75 MHz were acceptable with justification. 

(b) What is the best description of the frequency selectivity of the continuous-time linear time-invariant 

filter— lowpass, highpass, bandpass, bandstop, allpass, or notch?   Why?   4 points. 

Because we are passing frequencies below 0.4 MHz and eliminating an infinite number of 

harmonic frequencies at or above 0.5 MHz, this is a lowpass filter. 

Note:  If we had been asked to pass frequencies below 0.4 MHz and eliminate only the seven 

harmonics shown above, then one could have said either a bandstop filter to attenuate 

frequencies from 0.5 MHz to 4.5 MHz and pass frequencies below 0.4 MHz and above 4.6 MHz 

or a notch filter that notches the seven harmonics and their negative frequency counterparts. 

(c) Give an equation for the impulse response of the linear-time invariant (LTI) filter and plot it in the 

continuous-time domain.  4 points. 

Approach #1: Ideal filter.  The impulse response would be a two-sided sinc pulse for all time 

whose frequency response would be an ideal lowpass filter (rectangular pulse) that would pass 

frequencies between -0.4 MHz to 0.4 MHz and eliminate all other frequencies. 

Approach #2: Practical filter (averaging filter). Impulse response is a rectangular pulse with 

amplitude 1 for −
𝟏

𝟐
𝑻𝟎 < 𝒕 <

𝟏

𝟐
𝑻𝟎 where the fundamental period 𝑻𝟎 =

𝟏

𝒇𝟎
 . Frequency response 

would be a two-sided sinc function whose zero crossings would be at integer multiples of 𝑓0. 

(d) Give an equation for the frequency response of the LTI filter and plot it in the continuous-time 

frequency domain from -5 MHz to 5 MHz.  4 points. 

See the answers to part (c) above. 

 

 

  

Continuous-time version of mini-project #2 

The above plot is from Figure 2 in “Understanding Switching Regulator Output Artifacts Expedites 

Power Supply Design” by Aldrick Limjoco, Analog Devices. 

 

http://www.analog.com/en/analog-dialogue/articles/understanding-switching-reg-output-artifacts.html
http://www.analog.com/en/analog-dialogue/articles/understanding-switching-reg-output-artifacts.html


Problem 4. Discrete-Time Filter Design.  18 points. 

People suffering from tinnitus, or ringing of the ears, hear a tone in their ears even when the environment 

is quiet.  The tone is generally at a fixed frequency in Hz, denoted as fc. 

Filtering music to remove as much as possible of an octave of continuous-time frequencies from f1 to f2 

that contains fc as its center frequency can provide relief of tinnitus symptoms. 

To cover an octave of frequencies, f2 = 2 f1.  With fc = ½ (f1+ f2), we have f1 = (2/3) fc and f2 = (4/3) fc. 

This problem will ask you to design a sixth-order discrete-time linear time-invariant (LTI) infinite 

impulse response (IIR) filter to remove the octave of frequencies.   

The sampling rate is fs where fs > 4 f2. 

(a) What is the best description of the frequency selectivity of the continuous-time linear time-invariant 

filter— lowpass, highpass, bandpass, bandstop, allpass, or notch?   Why?  3 points. 

Bandstop filter to attenuate frequencies from (2/3) fc and (4/3) fc where fc is the tinnitus 

frequency in the audible range of 20 Hz and 20 kHz for a person with tinnitus. 

(b) Give formulas for discrete-time frequencies 𝜔̂1, 𝜔̂𝑐, and 𝜔̂2 that correspond to continuous-time 

frequencies f1, fc and f2, respectively.  3 points. 

𝝎̂𝟏 = 𝟐𝝅
𝒇𝟏

𝒇𝒔
 𝐚𝐧𝐝 𝝎̂𝒄 = 𝟐𝝅

𝒇𝒄

𝒇𝒔
 𝐚𝐧𝐝 𝝎̂𝟐 = 𝟐𝝅

𝒇𝟐

𝒇𝒔
 

(c) Give formulas in terms of 𝜔̂1, 𝜔̂𝑐, and 𝜔̂2 for the pole and zero locations for the sixth-order discrete-

time IIR filter which has 6 zeros and 6 poles.  Every positive frequency has a negative frequency 

counterpart.  So, if there is a zero at 𝑧 = 𝑒𝑗 𝜔̂0, there’s also a zero at 𝑧 = 𝑒−𝑗 𝜔̂0.   9 points. 

Zeros are real-valued or occur in conjugate symmetric pairs.  Same with the poles. 

Filter should attenuate frequencies between 𝝎̂𝟏 and 𝝎̂𝟐 as well as between −𝝎̂𝟐 and −𝝎̂𝟏. 

Bandstop filter.  Zeros on or near the unit circle indicate the stopband. 

Poles inside and near the unit circle indicate the passband(s). 

Zeros would be at frequencies 𝝎̂𝟏, 𝝎̂𝒄 and 𝝎̂𝟐 as well as their negative values. 

Because fs > 4 f2 , 𝝎̂𝟐 will be between 0 and 𝝅/𝟐. 

𝐙𝐞𝐫𝐨𝐬: 𝒆𝒋𝝎̂𝟐 , 𝒆𝒋𝝎̂𝒄, 𝒆𝒋𝝎̂𝟏 , 𝒆−𝒋𝝎̂𝟏 , 𝒆−𝒋𝝎̂𝒄 , 𝒆−𝒋𝝎̂𝟐 

𝐏𝐨𝐥𝐞𝐬: 𝒓 𝒆𝒋(
𝟏
𝟐)𝝎̂𝟏 , 𝒓, 𝒓 𝒆−𝒋(

𝟏
𝟐)𝝎̂𝟏 , 𝒓𝒆−𝒋(

𝟓
𝟒)𝝎̂𝟐 , −𝒓 𝐚𝐧𝐝 𝒓 𝒆𝒋(

𝟓
𝟒)𝝎̂𝟐  𝐰𝐡𝐞𝐫𝐞 𝒓 = 𝟎. 𝟗𝟓 

(d) Draw the pole-zero diagram using the numeric values below.  3 points.  

 

   

 

 

  

f1 =   2000 Hz 

fc =   3000 Hz 

f2 =   4000 Hz 

fs = 16000 Hz 

 

An alternate answer is on the next page. 



% Writing MATLAB code is not required on the text 

% This code is provide for additional insight into the answer in 2.4(d). 

% Bandstop filter in prob. 2.4(d) 

f1 =  2000; 

fc =  3000; 

f2 =  4000; 

fs = 16000; 

  

w1 = 2*pi*f1/fs; 

wc = 2*pi*fc/fs; 

w2 = 2*pi*f2/fs; 

  

z1 = exp(j*w1); 

zc = exp(j*wc); 

z2 = exp(j*w2); 

z1n = exp(-j*w1); 

zcn = exp(-j*wc); 

z2n = exp(-j*w2); 

zeros = [z1 zc z2 z1n zcn z2n]; 

numer = poly(zeros); 

  

r = 0.95; 

p1 = r*exp(j*(1/2)*w1); 

p2 = r; 

p3 = r*exp(-j*(1/2)*w1); 

p4 = r*exp(-j*(5/4)*w2); 

p5 = -r; 

p6 = r*exp(j*(5/4)*w2); 

poles = [p1 p2 p3 p4 p5 p6]; 

denom = poly(poles); 

  

figure; 

[hz1, hp1, ht1] = zplane(numer, denom); 

set(findobj(hz1, 'Type', 'line'), 'Color', 'k');  

set(findobj(hp1, 'Type', 'line'), 'Color', 'k'); 

set(findobj(ht1, 'Type', 'line'), 'Color', 'k'); 

  

figure; 

freqz(numer, denom); 

 

Student answer for parts (c) and (d) 

(c) Place 3 zeros on unit circle at angle 𝝎̂𝒄 and same 

goes at angle −𝝎̂𝒄. Place 4 poles at radius 0.95 and 

angles 𝝎̂𝟏 , −𝝎̂𝟏, 𝝎̂𝟐, −𝝎̂𝟐.  Place 2 poles at 𝒛 = 𝟎. 



Problem 5.  Continuous-Time Sinusoidal Amplitude Modulation.  16 points.   

Continuous-time sinusoidal amplitude modulation multiplies the input signal 𝑥(𝑡) by a sinusoidal 

signal of fixed frequency 𝜔𝑐 in rad/s to give the output signal 𝑦(𝑡) where 

𝑦(𝑡) = 𝑥(𝑡) cos(𝜔𝑐 𝑡) 

By taking the Fourier transform of both sides, we obtain the Modulation Property: 

𝑌(𝑗 𝜔) =
1

2
 𝑋(𝑗 (𝜔 + 𝜔𝑐)) +

1

2
 𝑋(𝑗 (𝜔 − 𝜔𝑐)) 

The term 
1

2
 𝑋(𝑗 (𝜔 + 𝜔𝑐)) shifts the frequency content of 𝑋(𝑗 𝜔) left in frequency by 𝜔𝑐 and scales the 

amplitude by ½ and the term 
1

2
 𝑋(𝑗 (𝜔 − 𝜔𝑐)) shifts the frequency content of 𝑋(𝑗 𝜔) right in frequency 

by 𝜔𝑐 and scales the amplitude by ½.  Here’s an example using an ideal lowpass spectrum for 𝑋(𝑗 𝜔): 

 

 

 

 

 

 

Please use the above Fourier transforms for 𝑥(𝑡) and 𝑦(𝑡) throughout this problem. 

Mixer #1.  In practice, we apply a lowpass filter (LPF) to enforce 

the lowpass bandwidth of 𝑋(𝑗 𝜔) to be 𝜔1 and a bandpass filter 

(BPF) to enforce the bandpass bandwidth of 𝑌(𝑗 𝜔) to be 2𝜔1 

centered at 𝜔𝑐, as plotted above.  Note that 𝜔𝑐 = 2 𝜋 𝑓𝑐 . 

 

Mixer #2.  Mixer #1 can be simplified by replacing the analog 

multiplier and cosine generator with a sampling block operating at 

sampling rate fs.  We keep the LPF and BPF filters the same. 

 

Assume all the LPF and BPF filters are ideal filters. 

(a) Plot 𝑉(𝑗 𝜔).   4 points. 

 

 

 

(b) Plot 𝑆(𝑗 𝜔).  6 points. 

 

 

 

 

(c) Give formulas that describe all the possible values for the sampling rate fs so that the mixer #2 

implements sinusoidal amplitude modulation.  6 points.  



Problem 6. Discrete-Time Mystery Systems.  14 points. 

You’re trying to identify unknown discrete-time systems. 

You input a discrete-time chirp signal 𝑥[𝑛] and look at the output to figure out what the system is. 

The discrete-time chirp is formed by sampling a chirp signal that sweeps 0 to 8000 Hz over 0 to 5s 

𝑥(𝑡) = cos(2𝜋𝑓1𝑡 + 2𝜋𝜇𝑡2) 

where 𝑓1 = 0 Hz, 𝑓2 = 8000 Hz, and 𝜇 =
𝑓2−𝑓1

2 𝑡max
=

8000 Hz

10 𝑠
= 800 Hz2.  Sampling rate 𝑓𝑠 is 16000 Hz. 

In part (a) and (b) below, identify the unknown system as one of the following with justification: 

1. filter – give selectivity (lowpass, highpass, bandpass, bandstop) and passband/stopband frequencies 

2. pointwise nonlinearity – give the integer exponent k to produce the output 𝑦[𝑛] = 𝑥𝑘[𝑛] 

 

(a) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right).  7 points. 

In the output spectrogram, principal frequencies of the chirp input signal between 0 and 4 kHz 

are severely attenuated and higher principal frequencies are passed.  No new frequencies are 

created, so it is likely an LTI filter. Highpass filter.  See the next page for the Matlab code. 

(b) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right).  7 points. 

In the output spectrogram, new frequencies are being created, so it’s not an LTI system.  At any 

point in time from 0s to 1.67s, the frequency component in the output spectrogram that rises 



from 0 Hz to 8000 Hz is three times the principal frequency component in the input 

spectrogram; input frequencies that exceed 2667 Hz will be tripled and then alias, which makes 

the shape of an italicized letter N.  The output spectrogram also has a copy of the input signal.  

This is a cubing block, i.e., a pointwise nonlinearity with 𝒌 = 𝟑.  When inputting 𝐜𝐨𝐬(𝝎𝟎 𝒕) into 

a cubing block, the output is 𝐜𝐨𝐬𝟑(𝝎𝟎 𝒕) =
𝟑

𝟒
𝐜𝐨𝐬(𝝎𝟎 𝒕) +

𝟏

𝟒
𝐜𝐨𝐬(𝟑 𝝎𝟎 𝒕) per slide 3-9. 

 
%% Midterm Problem 2.6 

fs = 16000; 

Ts = 1 / fs; 

tmax = 5; 

t = 0 : Ts : tmax; 

  

%% Create chirp signal 

f1 = 0; 

f2 = fs/2; 

mu = (f2 - f1) / (2*tmax); 

x = cos(2*pi*f1*t + 2*pi*mu*(t.^2)); 

  

%% (a) highpass filter 

fnyquist = fs/2; 

fstop = 3800; 

fpass = 4200; 

ctfrequencies = [0 fstop fpass fnyquist]; 

idealAmplitudes = [0 0 1 1]; 

pmfrequencies = ctfrequencies / fnyquist; 

filterOrder = 300; 

h = firpm( filterOrder, pmfrequencies, idealAmplitudes ); 

h = h / sum(h .^ 2); 

  

y = conv(x, h); 

  

%%% Spectrogram parameters 

blockSize = 1024;  

overlap = 1023; 

  

%%% Plot spectrogram of input signal 

figure; 

spectrogram(x, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; 

  

%%% Plot spectrogram of output signal 

figure; 

spectrogram(y, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; 

  

%% (b) cubic block 

figure; 

spectrogram(x, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; 

  

%%% Plot spectrogram of output signal 

figure; 

spectrogram(x.^3, blockSize, overlap, blockSize, fs, 'yaxis'); 

colormap gray; 


